
Building a Generic Broker for Location Retrieval

N. Prigouris, G. Papazafeiropoulos, G. F. Marias, S. Hadjiefthymiades, L. Merakos

Communication Networks Laboratory
University of Athens, Dept. of Informatics & Telecommunications,

Panepistimiopolis, ATHENS 15784, Greece
email: nprigour@noc.uoa.gr

ABSTRACT

Positioning is an essential component for the deployment
of the evolving context-aware concepts. Information
Society Technologies (IST) project PoLoS investigates
existing schemes for Location-Based Services and latest
technological achievements in the sector of Geographical
Information Systems, positioning techniques and network
interfaces (GSM/GPRS) in order to design and implement
a platform capable of providing the full functionality
needed to design and deploy Location Based Services.
PoLoS’ Positioning component (POS) offers
undependability of the underlying heterogeneous network
infrastructures and positioning techniques, establishing a
generic, open, modular, and QoS enabled framework. This
article illustrates the technical specifications, the design,
the functionality and the prototype implementation of the
POS component, its features and the services that the POS
component offers to the PoLoS platform and middleware
applications.

I. INTRODUCTION
The last decade there has been a remarkable development
in the field of mobile and wireless computing. The
evolution in wireless hardware technology, combined with
the rapid proliferation of mobile/wireless Internet prepared
the grounds for the introduction of new alluring types of
applications. Context–aware applications are a typical
paradigm of such types of services. Positioning is treated
as an essential component of the evolving context-aware
frameworks [1] [2] [3]. Location Based Services (LBS),
where the mobile user is provided with information
pertaining to its current position, can be characterized as
the most rapid expanded area of context–aware computing,
on which much research and effort has been carried out.
Several services are based on location techniques, such as:

• Emergency services as defined by the E911 mandate
and the E112 recommendation

• Point of Interest (POIs)
• Navigation and routing
• Geocoding and reverse Geocoding

LBS services and applications can be offered by
commercial, value added service, application and content
providers, carriers and network operators, and can be used
by the public administration sector, organizations, industry,
and citizens. From the providers’ and operators’ point of
view there is a requirement for a generic platform that
provides a re-usable environment for rapid development

and deployment of LBS services, in an independence from
networking platforms, location techniques and terminal
technologies (e.g., cellular handset, PDAs) framework.
These requirements are addressed by the PoLoS project,
which objective is to design, specify and implement an
integrated platform, which will cater for the full range of
issues concerning the provisioning and delivery of
Location Based Services [4]. This platform will enable the
specification, creation and fast deployment of LBS
services, without any additional requirement in terms of
networks platforms or terminal devices.
On the other hand, for the establishment of LBS services, a
generic “Positioning” entity is essential, to take advantage
of the various underlying mobile and wireless positioning
capabilities and to hide the heterogeneity of the location
techniques, providing a general service to the upper
middleware and platforms. This article introduces the POS
component, which is responsible for providing the
information pertaining to the position of a mobile or
wireless terminal. Section II discusses the location and
positioning architectures and techniques as standardized by
the international fora or proposed in the literature. Section
III provides a brief overview of the architectural design of
the PoLoS platform. A general overview of the POS
component, summarizing its features and its novel
characteristics, is given in Section IV. Section V elaborates
on the internal architecture of the component. The open
interfaces offered by the POS are described in section VI
and the article summarizes on the advantages and possible
enchantments that might be applied.

II. LOCATION ARCHITECTURES AND
TECHNIQUES

Several location architectures and techniques have been
standardized and proposed for cellular (i.e., GSM /GPRS,
UMTS) and Wireless Local Area Network (WLAN)
infrastructures. Triangulation, scene analysis and proximity
[5] can be utilized for obtaining absolute geographical
position within a 3-dimension environment. In Global
Positioning System (GPS) the timed difference of arrival
of signals from distinct satellites is used for performing the
necessary computations and inferring an estimation of the
objects’ position. Network assistance can be used for
improving accuracy. Location determination can also be
achieved through terrestrial infrastructure by using
methods such as Time of Arrival (TOA), Enhanced
Observed Time Difference (E-OTD), Angle of Arrival

(AOA) and Cell ID that differ in terms of accuracy,
network/handset impact and time to first fix.
The 3rd Generation Partnership Project (3GPP) has
specified a standard configuration of Location Services
(LCS) entities in a GSM and UMTS Public Land Mobile
Network (PLMN) [6]. In the defined architecture, the
Gateway Mobile Location Center (GMLC) is the first node
an external location application (LCS client) accesses in
the PLMN. The GMLC performs registration authorization
and requests routing information on behalf of the LCS
client. The communication interface between GMLC and
an LCS client is addressed by the Location Interoperability
Forum (LIF), which tries to develop an open specification
through the Mobile Location Protocol (MLP). The current
release of the MLP specification specifies an application-
level protocol for querying the position of mobile stations
independent of the underlying network technology [7]. The
PoLoS platform acting as an External LCS Client with
advanced functionality might interact with the GMLC
using MLP.
In WLAN systems, a similar architecture can be
considered. The PoLoS project has introduced a novel
entity, resembling the functionality of the GMLC, capable
of performing location estimation in WLAN environments
(e.g., 802.11 series). This entity, referenced as GWLC
(Gateway WLAN Location Center) is currently under
design. GWLC will utilize commercial indoor location
positioning systems (MSR RADAR [8], Nibble [9],
Ekahau [10]) and should provide an OSA-based [11]
lightweight interface. The service provisioned from the
GWLC will be published through a service discovery
mechanism (e.g. JINI [12], SLP [16] etc.).
Existing LBS platforms (LocationNet [13], CellPoint [14],
Webraska SmartZone Geospatial [15]) utilize a Positioning
entity, performing routing of requests/responses to/from a
mobile user. Although they support the majority of the
positioning techniques (e.g., CellID, TOA, AOA, E-OTD
and GPS), most of them lack support for WLAN indoor
environments. This feature is addressed in PoLoS POS
component, where WLAN communication is achieved
through the GWLC.

III. POLOS ARCHITECTURE

Figure 1: The PoLoS Architecture

The PoLoS project aims to design, specify and implement
a generic framework, for the development and deployment
of various types of Location Based Services. The platform
features a fully component based architecture that is
depicted in Figure 1 [17]. As Figure 1 illustrates, the
PoLoS platform can be viewed as a unified platform that
provides different types of services independently of the
underlying technology (WLAN, UMTS, GSM etc.). The
main components of the PoLoS platform are:

• The PoLoS Kernel (KRN) comprises the primary
component of the pursued platform and is responsible
for the co-ordination of communication with the rest
components in order to provide the functionality
specified for each LBS. It hosts the logic for the
deployment, invocation and execution of each service
offered by the platform.

• The Geographical Information System (GIS)
component interacts with existing deployed GIS
repositories retrieving both textual and visual
information.

• The POS component is responsible for providing the
Kernel with the appropriate information pertaining to
the current position of a mobile terminal accessing a
particular service. Access to the network is
implemented through an OSA /Parlay interface.

• The Interfaces component enables the communication
of service specific information to entities external to
PoLoS (e.g. mobile terminals) and handles all requests
in a device independent way. It supports different
transport protocols from SMS and WAP to HTTP/IP.

• The Service Creation Environment (SCE) is an
Integrated Development Environment (IDE), which
supports the service designer in specifying the service
control logic, parameters and additional support
elements through the deployment of scripts, written in
a XML–based language designed for this purpose.

• The charging/billing module collects and stores
invocation information pertaining to end-users in order
to perform charging/billing operations.

The PoLoS project, adopts state-of-the-art software tools
(EJBs [20] [19], JMS [18], JAIN [21], Open Service
Access/Parlay [11]) for platform development. Moreover,
it interoperates with the latest transport technologies and
techniques in the field of wireless–mobile communications
(WAP, SMS, HTTP etc.) in order to offer the end-user
seamless access to distinct services.

IV. POS OVERVIEW
The positioning component (POS) of the PoLoS platform
is responsible for providing location information to the
kernel. It integrates the underlying positioning
technologies, providing a unified interface, overriding the
differences that are introduced by the diversity of the
underlying location tracking techniques. POS offers a well-
defined service to the KRN via a communication interface.
This interface supports four (4) types of requests
forwarded by the KRN to the POS component:

• Request-Response (RR)

• Event-driven Request (ER)
• Periodic Request (PR)
• Generic Request Response (GR). Similar to a Request

Response except that there are no attributes associated
with it. The POS should use appropriate criteria to
define a best-fit response.

Requests of ER type contain certain attributes and result in
position reporting based on certain location related–events
occurring in the underlying network (e.g. a user enters or
exits a specific geographical area). In PRs, the KRN
explicitly defines the mean time between the resulting
location reports.
POS combines a number of enhanced features that
differentiate it from other similar approaches. The adopted
POS design goals are:

• Generality: by supporting various types of request
(RR, ER, PR, and GR) and offering location
information retrieval, based on either an IP address
(Ipv4, Ipv6) or an E.164 address [22], through several
types of network infrastructure.

• Portability: through the usage of the Java language
and the features offered by the J2EE technology (EJBs,
JMS, JMX [23]).

• Modularity: due to its modular architecture (see
section V) and the discrete functionality that is
supported by each of the sub-modules.

• Efficiency: by constructing asynchronous method
calls between its sub-modules, the introduction of
micro-Wrappers (see section V.E) and the
incorporation of multiple Message Queues that enable
the concurrently processing of multiple requests.

• Extendibility: due to POS modular design as well as
the use of Java technology features such as RMI, EJBs
and JMS. The POS design minimizes the relationships
between sub-modules and allows their deployment in
a fully distributed environment.

• QoS orientation: by disposing mechanisms for QoS
support based on certain attributes provided during a
request, such as time to respond and priority level.

• Openess: due to the adopted OSA compliant interface
with the underline network infrastructure.

Figure 2: POS Architecture

V. POS ARCHITECTURE
The POS internal architectural design is presented in
Figure 2. Most of the modules comprising POS are
implemented in Java as simple EJBs with the exception of
the Wrapper component, which features a more
sophisticated design.

A. Dispatcher module
The Dispatcher module is responsible for communicating
with the KRN. It receives requests from the KRN, pre-
parses them and forwards them to the appropriate entity
(Multiplexer, Scheduler). Requests of RR and GR type are
routed to the Scheduler while the Multiplexer module
handles the ER and PR requests.

B. Router module
The Routing module incorporates an internal database,
with proper mappings between IP addresses and Wrapper
IDs, which are used in order to decide the wrapper that will
handle a request. The Router encapsulates the logic for
resolving the IP address of the GMLC/GWLC entity based
on the users’ address (IP or E.164) that is passed from
KRN during the request. The Router module also provides
a well-defined administrators’ interface for configuration
management (insertion/deletion) and monitoring of the
database’s routing information entries. Through this
interface, the POS administrator controls the
creation/destruction of Wrapper objects pertaining to
specific database entries.

C. QoS Scheduler module
The QoS scheduler handles requests of RR or GR type
forwarded by the Dispatcher. Requests are firstly stored in
the queue that corresponds to their QoS class and then they
are scheduled based on various criteria such as response
time, priority level etc. Each class is served currently in a
round robin fashion, whilst other scheduling disciplines
(such as WFQ [24]) will be applied depending on
efficiency and performance goals.

Figure 3: Design and Architecture of Scheduler Component

The QueueClock (QCl) element can be considered the
heart of the module. It is the entity responsible for the
maintenance of the queues and co-ordinates the
insertion/removal of requests to/from each Class queue.
The Scheduler Objects (see Figure 3) act as
communication points with the neighbor entities and their

role is twofold. When invoked by the Dispatcher unit they
are used for adding requests to queues through the QCl.
The QCl can also request a Scheduler object in order to
service a request. The Scheduler forwards requests to
Wrappers based on information obtained from the Router.
When a Wrapper accepts a request, the Scheduler removes
it from the queue. Each service request can be retried for a
number of times before a time out occurs.

D. Multiplexer module
The Multiplexer module handles requests of ER and PR
type. It communicates with the Router obtaining
information relatively to the Wrapper that will handle the
request. Its role consists in multiplexing service requests of
the aforementioned types emanated from the same
user/terminal. The multiplexing can significantly reduce
the signaling overhead produced from the ER or PR
messages, since the position information is now retrieved
only once.

E. Wrapper modules
Wrappers are entities that exist at the bottom level of the
POS component and are created or destroyed by the Router
module during the process of insertion or deletion of
routing entries. They act as communication points with the
underlying network infrastructure, and are designed to
serve multiple requests/responses simultaneously. Three
types of Wrappers exist:
• GMLC Wrapper: handles communication with the
GSM/UMTS location system (i.e. a GMLC).
• WLAN Wrapper: handles the interface between the
POS and WLAN location system (i.e. GWLC).
• GPS Wrapper: handles the interface between the POS
and the GPS Repository. ER requests are not supported.
Figure 2 illustrates that multiple instances of each Wrapper
type may exist. Each Wrapper instance pertains to a
distinct operator of a certain network type and is
recognized within the PoLoS system by a unique Wrapper
ID. There is also the possibility that an operator should
have multiple Wrappers of a particular type.

Figure 4: Internal Design & Architecture of the Wrapper

component
Figure 4 elaborates on the internal structure and
functionality of the Wrapper module presenting the actual
processing of a received request. Every request is

intercepted by the Handler, assigned a unique id and then
forwarded to a proper SENDER Message Queue (JMS
queue). Certain micro-wrappers are activated (1) and
remove the request from the queue (2) in order to process it.
The micro-Wrappers communicate with the underline
network infrastructure (3) through a well-defined OSA API.
The obtained results (i.e. current user location, periodic
location reports) are forwarded to another JMS queue (4).
The Listener entity that exists within the Wrapper poles
this RECEIVER queue for possible messages and forwards
the results upwards to the KRN.
Although not depicted in Figure 4 each queue may serve
multiple Wrappers simultaneously. New pairs of SENDER,
RECEIVER queues can be introduced by the system
administrator and assigned to specific Wrapper instances
for load balancing reasons.

VI. POS INTERFACES
This section presents the interface between POS and its
neighbor entities. We elaborate only in the communication
of POS with the KRN component, since POS interface
with the underline network infrastructures is based on the
OSA/Parlay API specification [11].
POS provides two method calls for the communication
with the KRN. GetLocation() is the generic method used
for issuing any type of request to POS while
stopLocationRequest() is used explicitly by the KRN to
signal the termination of ER and PR notifications. Using
these calls, the KRN passes to POS the Service ID and the
User ID, as well as a set of attributes in the case of
getLocation() (Table 1). The first two arguments uniquely
identify a request within the PoLoS platform. The
attributeSet is a structure that contains information
necessary for POS operations. Table 2 summarizes these
attributes, and gives details on their types and possible
values.

Table 1: Interface KRN POS (Methods Description)
Methods Arguments Description

getLocation() serviceID,
userID,
attributeSet

Generic request method for
retrieving the user’s location

stopLocationReporting() serviceID,
userID

Stops the sending of location
requests (ER & PR only)

Table 2: POS Request Attributes (AttributeSet Description)
Attribute

Name
Type Details

requestMethod String RR, PR, ER, GR
priorityLevel Integer Level of Priority to be issued by Kernel
Period Float For PRs only. Values in msecs
timeToRespond String Values: NO_DELAY, LOW_DELAY,

DELAY_TOLERANT,
USER_DEFINED

posWrapper String The KRN explicitly defines the Wrapper.
Values: GMLC, GWLC, GPS

altitude Boolean The KRN explicitly defines if it needs
the Altitude.

type String Values: LAST_KNOWN, INITIAL,
CURRENT, DON’T_CARE

method String Values:E-OTD, AGPS, CellID, ToA etc.
accuracy Integer Meters
area Hashtable Defines the desirable area in the case of

an ER positioning request.

Figure 5 depicts a sequence diagram that provides details
on the various method calls and message exchanges
between POS sub-modules for RR type of requests. In the
diagram below, userID is a structure that contains
addresses that uniquely identify an end user (e.g. E.164 or
IP) while serviceID is a discriminator for a KRN service.

PoLoS KRN Dispatcher Scheduler Router Wrapper A MicroWrapper
xxx

GMLC A

getLocation(userID, serviceID, attributeSet)

[type] parse(attributeSet)

{if type = RR } insert(userID, serviceID, attributeSet)

[wid] determineWrapper(userID)

{if wid = A} requestLocation(userID, serviceID, attributeSet)

[assocID] createAssociation(userID, serviceID)

{if assocID = xxx} messageReqLocation(userID, assocID=xxx, attributeSet)

[LOCATION] locationReportReq(userID, attributeSet)

removeAssoc(assocID = xxx)

messageReqResponse(userID, assocID=xxx, LOCATION)
returnLocation(userID, serviceID, LOCATION)

Figure 5:POS Request Response (RR) Sequence Diagram

VII. CONCLUSIONS
PoLoS Positioning Component deploys a generic
framework for data positioning retrieval. Based on state-of
the-art tools (such as J2EE) it consolidates a number of
characteristics that are suitable for deploying LBS
applications. Although designed and implemented within
the PoLoS project, it is completely decoupled from the
PoLoS platform, due to the generic Positioning API
offered and the modular architecture that is adopted. POS
component can be deployed either as an integral or as a
plug-in module of other core systems. Its most pursued
feature is the provision of a unified interface that hides the
heterogeneity of the underlying network infrastructure,
supporting position data retrieval by mobile and wireless
networks. Work is still under consideration, and concerns
the implementation of scheduling and multiplexing
schemas that can be used within the Scheduler and the
Multiplexer module respectively, in order to maximize
efficiency and performance of the POS component.

VIII. ACKNOWLEDGMENTS
The work presented in this paper has been performed in the
framework of the project IST-2001-35283 "PoLoS", which
is partly funded by the European Community and the
Swiss BBW (Bundesamt fur Bildung und Wissenschaft).
The authors would like to acknowledge the contributions
of their colleagues from CSEM, ALCATEL SEL AG,
Telefonica I+D, Epsilon Consulting Ltd, INTRACOM SA,
EPSILON SA and the University of Athens.

REFERENCES
[1] U. Leonhard, J. Magee, P. Dias, “Location Service

in Mobile Computing Environments,” Computer &
Graphics Special Issue on Mobile Computing, Vol.
20, Nr. 5, Sept/Oct ‘96

[2] P. Beadle, B. Harper, G.Q. Maguire and J. Judge,
“Location Aware Mobile Computing,” Proc. IEEE
Intl. Conference on Telecommunications,
Melbourne, Australia, Apr. 1997

[3] A. Smailagic, and D. Kogan, "Location Sensing in a
Context Aware Computing Environment," IEEE
Pervasive Computing, Jul.-Sept. 2002

[4] IST-2001-35283 Project PoLoS, “Integrated
Platform For Location Based Services”, Public
Deliverable D011, “Project Presentation”, Apr. 2002

[5] J. Hightower and G. Borriello, “A Survey and
Taxonomy of Location Systems for Ubiquitous
Computing,” University of Washington, Computer
Science and Engineering, Technical Report UW-
CSE 01-08-0, Aug. 24, 2001

[6] 3GPP TS 23.002 V5.6.0 (2002-03), 3GPP;
Technical Specification Group Services and
Systems Aspects; Network architecture (Release 5)

[7] Location Interoperability Forum Technical
specification TS101 v2.0.0, Mobile Location
Protocol, Nov. 2001

[8] P. Bahl and V. Padmanabhan, “RADAR: An in-
building RF based user location and tracking
system”, Proc. IEEE INFOCOM, Mar. 2000

[9] P. Castro, P. Chiu, T. Kremenek, and R. Muntz, “A
Probabilistic Room Location Service for Wireless
Networked Environments,” Proc. Ubicom 2001

[10] Ekahau’s Positioning Engine, Jan. 2002
[11] Open Service Access (OSA); Application

Programming Interface (API); Part 1: Overview,
Final draft ETSI ES 202 915-1 V1.1.1 (2002-11),
www.parlay.org/specs/es_20291501Overview.zip

[12] Sun Microsystems, Jini™ Architecture Specification,
Version 1.2 Dec. 2001, www.sun.com/software/jini
/specs/jini1_2.pdf

[13] http://www.locationet.com
[14] http://www.cellpoint.com
[15] http://www.webraska.com
[16] E. Guttman, et. al, “Service Location Protocol

Version 2,” RFC 2608, Jun. 1999
[17] IST-2001-35283 Project PoLoS, “Integrated

Platform For Location Based Services”, Public
Deliverable D111, “PoLoS Platform Architecture
and Services Specification”, Sept. 2002

[18] Sun Microsystems, JavaTM 2 Platform, Enterprise
Edition (J2EETM), http://java.sun.com/j2ee

[19] Sun Microsystems, Enterprise JavaBeans 2.1
Specification, Public Draft

[20] E Roman, “Mastering Java Beans”, 2nd Edition, John
Wiley & Sons 2002

[21] JAIN White paper, java.sun.com/products/jain/
WP2002.pdf

[22] P. Faltstrom, “E.164 Numbers and DNS”, RFC
2916, Sept. 2000

[23] Sun Microsystems, JMX Framework,
http://java.sun.com/products/JavaManagement

[24] A. Demers, S. Keshav and S. Shenker, “Analysis
and simulation of a fair queueing algorithm,” Proc.
ACM SIGCOMM’89

